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DISTRIBUTIONS DURING CONTACT DRYING OF A SHEET 

OF MOIST MATERIAL 
S. BRUIN? 

Department of Food Science, Agricultural University, Wageningen, The Netherlands 
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A~~-Using equations derived by Luikov 17-91 as a starting point, the drying of a layer of moist 
material in contact with a hot plate is analysed. Makovozov 15, 61 analysed a special case, viz. that of a 
constant temperature at the hot plate; we pay special attention to (i) the case of a constant heat flux and 
(ii) the case with a heat flux exponentially decreasing with time. As Makovozov we assume that (if the 
pressure gradient influences on the moisture movement are negligible and (ii) that the moisture transport 
takes place mainly as a result of temperature gradients and not in consequence of moisture potential 
gradients. We endeavoured to derive also a more general equation without the last mentioned restriction 
but encountered unsurmountable difficulties due to the asymmetry of the boundary conditions involved. 

The influence of dimensionless parameters on the temperature and moisture potential distributions 
is illustrated bv numerical examnles. The results are comaared with scarce experimental data in the 

References. _ 

NOMENCLATURE Iz 4’ 

coordinate pe~endicular to the 
surface CL] ; 4tV 

temperature [“C] ; 
moisture potential [“M]$ ; P3 

time [T] ; 
thermal diffusivity coefficient 

gil 

[L2T- ‘1; $’ 

diffusion coefficient of moisture in 
the material [L2T-‘1 ; Lqi7 Liq, 

specific heat of evaporation 
[L2T-2]; 

thermal gradient coefficient [“C1] ; Lii7 
specific isothermal mass capacity 
of the material [“M-r] ; I), 

specific heat capacity of the material 
[L2T+C-1-J; b, 

heat-transfer coefficient 

thermal conductivity 
[mLT-3”C-1]; 

= aunt, moisture conductivity 
[mL-‘T-‘WI-‘]; 

density ofthe dry material [mL-"1 ; 
heat flux [mT- “1; 
mass flux [mL- 2T- ‘1; 
partial specific Gibbs free energy 
[L2T - ‘1; 
phenomenological coefficients for 
the fluxes q$,,, $q [mT-‘L-‘“C-‘, 
mT-‘L-‘1; 
= ~~(~~~~e~*, phenomenological 
coefficient for the flux Cpm[mTL - “] ; 
thickness of the layer of moist 
material [L] ; 
relaxation time [T]. 

[mTe3 “C-‘I§ ; 
mass-transfer coefficient Dimensionless criteria 

[mL-2T-loM-1]; ;z Fourier number, = uqr/D2 ; 
Luikov number, = ~,,,/a~ ; 

f Present address : Department of Chemical Engineering, sii, Biot number for mass transfer, 
Technological University, Eindhoven, The Netherlands. 

$See Luikov [7-93, c, = (&@?)r where t( is moisture 
= uqD/Aq ; 

content in [m/m]. Big, Biot number for heat transfer, 
8 m means a mass unit. = u,D/&, ; 

4.5 



KO, Kossovitch number, from bottom to top (Fig. 1). The temperature 

%#r(~o - @,I> at the surface may be either higher or lower than 

= c& - to) ’ Dry olr (t,) 

Pn, Posnov number, 3 

= S(t, - to) . 

Mb - 0,) ’ 
, 
I 
I He& - and mokture transport 

8, phase change criterion [4] 
o*h 

adaT 
P ’ 

t t I t 

Final moisture potentbl:& 

i 
T, dimensionless temperature, 

t - t, =----* 
El, - E,’ 

0, dimensionless moisture transfer po- 
tential, I Hot-plats 

heat flux@&) 

8, - 0 temperature 4 k) 

=m- FIG. I. Schematic picture of the contact drying process. 

5, dimensionless temperature of the 
surroundings, that of the surrounding air, so that the sheet may 

t, - to =---* loose or gain heat by free or forced convection, 
tf( - to’ It is assumed that the constitutive equations for 

x, dimensionless coordinate, = x/D ; heat and mass flux of the~odynami~lly 
v, cp, A, II, d~ensionless groups respectively irreversible processes hold (de Groot and 

defined in equaticns (26) and (35); Mazur [l], Chapter XV). According to these 
Ki,,(Fo), dimensionless heat flux, 

1 
equations there is a liner relation between the 

O&4. ktFO) . 
= /I&, - to)’ 

fluxes (averaged over a representative surface 
element, sufficiently large to cover all occurring 

Ki,(Fo), dimensionless mass flux, pore sizes) and the gradients in temperature and 

NJ,,,, dFo) the temperature independent part of the partial 

= ~~(8, - e,) ’ specific Gibbs free energy (chemical potential). 

Subscripts This is only true with one dimensional fluxes [2]. 

k, at the surface of the hot plate ; The gradients are defined as the differences in 

0, initial ; the parameters at two sides of a characteristic 

s, surroundings ; volume element divided by a characteristic 

w in ~uilibri~ with surro~ding length (see Whitaker [3])_ The characteristic 

air ; length must be long enough to cover all occurring 

( >3 averaged over characteristic sequences of pore sizes. With respect to an 

surface ; inertial frame of reference one obtains the 

1, in liquid state. following equations for the average fluxes: 

1. INTRODUCTION 
GP,) = -Aq$-Liq 2 c-1 T 

IN THE present paper we analyse the contact (1) 
drying of a moist porous sheet on a hot plate 
under such conditions that no boiling of the 

(#,>= -L,,~-Lii ~ 0 P 

water is possible. Heat flows through the sheet These equations are valid, or at least a good 
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approximation, if the following conditions are 
satislied : 

4. 

5. 

During the process no deformation of the 
solid phase occurs (e.g. shrinkage phenomena 
are excluded). 
The characteristic length of the porous 
medium must be some orders of magnitude 
smaller than the ehararacteristic length of 
the spatial derivatives of the intensive para- 
meters. Whitaker [3] gives a precise defini- 
tion of these two characteristic lengths. 
If there exist appreciable fluctuations in the 
intensive parameters inside a characteristic 
volume element (characteristic surface times 
the characteristic length) the averaging pro- 
cedure is no longer admissible. Luikov 

[4, PP. 24, 261 assumes thermodynamic 
equilibrium between all three phases inside 
a volume element. In the thermodynamics of 
irreversible processes for a single phase a 
postulate is required which states that thermo- 
dynamic equilibrium exists at each point in 
the phase. If one considers a porous medium 
evidently one additional postulate has to be 
introduced to obtain the equations (l), 
namely that also thermod~amic equilibrium 
exists between the phases present inside a 
characteristic volume element. The main 
reason for the necessity of this postulate 
is the otherwise not uniquely defined tem- 
perature. If the experimental situation is such 
that this additional postulate is not warranted 
the equations (1) cannot be used. 
Thegradients in temperature and the chemical 
potential must be one dimensional. The 
necessity of this condition appears in the 
averaging of the entropy production over the 
characteristic volume element. 
The rate of work done by viscous forces to 
push the fluid through the porous structure 
inside a volume element is negligible. 

Combination of the equations (1) with the 
appropriate equations of change for each phase 
and subsequent summation over the phases 
present (the Gibbs free energy is assumed to be 

only a function of temperature and moisture 
transfer potential 8, gravity forces are neglected), 
led Luikov to the following set of differential 
equations (we give the one dimensional form): 

These equations govern the heat and mass 
transport inside the layer of moist porous 
material. 

If 4, I, and 6 are constant the following set 
of equations remains after introduction of 
dimensionless parameters : 

aT d2T --_-- 
c3Fo ax2 eK0~ 

dF0 (4) 

E. =: L&a28 _ ~u~na2T -. 
dFo dX2 ax2 f3 

In practice &, A4 and 6 will be functions of the 
moisture transfer potential and the temperature. 
For a zonal calculation one can consider them 
to be constant, see Luikov [4], p. 33. 

Makovozov [S, 6] analysed the process of con- 
tact drying using these differential equations with 
the simplifying assumption that the moisture 
movement takes place mainly due to tempera- 
ture gradients so that the influence of moisture 
potential gradients are negligible in comparison. 

In section 2.1 we endeavoured to derive a 
solution of the complete set of equations (4) 
and (5) when the temperature of the hot plate 
is constant; Section 2.2 gives the analysis 
(with Makovozov’s simplification) when the 
heat flux rather than the temperature is a given 
function of time. 

2. DERIVATION OF EQUATIONS FOR TEMPERA- 
TURE AND MOISTURE ~IS~IBU~ON 

2.1. General solutions 
The equations (4) and (5) must be solved with 

the following boundary conditions : 
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lnitirtf conditions : equations by means of the Laplace transforma- 

~~X~~~ = 0. @(X,0) = 0. (6) 
tion [4,10-121; we define the tra~furmatio~ as : 

Heat balance at the free surface : 2(&X, Wl = SCX, 4 

& Tf 1, E’o) - Si,[{ - T(l,Fa)] - (1 - E) 
= $ #(X, Fo) exp ( - sFu) dFo. (11) 

x IICO Lu Bi,[ 1 - @ (1) Fo)] = 0. (?l 
Ap~Iy~n~ this transformation on (4-10) gives: 

Mass balance at the free surface : sqx 4 (W 

-k 3&J-l - @(I, Fu)] = 0. 0-9 
= L”dX2 -dL73(X, s) - Lu Fn 

Mass balance at the surface of the hot plate : 

and the boundary conditions become : 
T(O, 8’0) -i- Ki,(Fo) = 0. 

The temp~mture of the hot plate is constant (i), 
or the heat ff ux is given (ii) : 

-i-(1 

(i) T(0, Fo) = I 

- (1 - E) KoLu Kim(Fo) = 0. J 
$ qo, 3) - Pn $ T@, s) + Em(s) = 0 (16) 

This is the set of boundary conditions 
Makovozov uses, if one puts KZ,(Fo) = 0 in 
equation (9) (this means that no mass transfer 

T(O,s) =i + (17.i) 

takes place at the surface of the hot plate} 
and if we choose (l&i). We assumed linear heat $ T(O, s) + E&s) - (I - 8) Ku Lu E&s) = 0. 
and mass transfer at the free surface of the 
material ft is ~o~ven~e~t to solve this set of (I 7.6) 

The solutions of (12) and (13) are [4] : 

3X, s) = Al exp (XII, Js) + A, exp ( - XIT, 4s) -t A, exp (XTiz Js) + A, exp (- Xnz *i’s) (18) 

[A, exp (XII, 4s) + A, exp (- lI,X Js)] -t (’ ,,“” [A3 exp (XI& Js) 

+ A4 exp ( - XII2 Js)]. (19) 

The constants AZ-A, can in principle be calculated from (14-17). The IT, and TIa in (18) and (19) 
are given by : 
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1 +&KoPn +& - (-1)’ (20) 
The calculation of the constants A, - A, from (15, 14, 16) with z,,,(s) = 0 and (17.i) gives the 
following set of linear equations : 

A, +A, +A, +A,=! 

N,(,/s)A, +N,(+)A:- N,(,/s)A, - N,(,/s)A, = 0 

M~A~exp(&Js) - RlA2exp(-&,/s) +MzA3exp(I12,/s) - R,A,exp(-II,,/s) 

Bi 
= _-.!!! 

S 

[l-M,/4 + QJ 4 ev (b & - VI (Js) - QJ A2 exp t-n, Jd 
+ [& (44 + Q21 4 exp W2 $I- In2 ($I- Q21 A4 exp (4, ,/s) 

= i [B&g - (1 - E) Ko Lu Bim] 

where : 

Ni = - PtllTi + 
IIi(l - II 

EKO 

M, = N, _ Bid1 - W) 
I I E rr 

:lL0 

Bi,(l - l-I:, 
Ri =Nif _~_ 

421) 

drying process this condition will be certainly 
fulfilled. One could say that ifthe Posnow number 
has a relatively high value this approximation 
seems reasonable. Further discussion is post- 

(22) poned to Section 3. 
Accepting this simplification the equations 

(12-17) become [equation (14) and (15) are 
ERU 

Qi = Biq - y LU Bi,(l - II;). J combined to give equation (25)] : 

The system of equations (21, 22) can in 
sT(X, s) = v d$ T(X, s) 

principle be solved by the well known Cramers 
rule [13], but it will be very difficult to perform 
the inversion of the Laplace transformed poten- 
tials. It is clear that these complications arise 
from the asymmetrical boundary conditions to 
the problem. 

sO(X, s) = - Lu Pn -$ T(X, s) 

2.2. Simplified models 
& T(l,s) - (pBi, T(l,s) - f 

[ I 
Makovozov proposed to simplify the system 

of equations by putting 

a2 - (o(l - E)KO Lud-O(l s) = 0 
Lu& N 0. dX ’ 

Physically this means that the moisture move- 
ment under influence of moisture potential where v= 1 +cKoLuPn 

gradients is negligible. In the first periods of the and cp = [l - (1 - e) Ko LU Pn] - l 

(23) 

(24) 

(25) 

(26) 
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(i) $ B(0, s) - Pn -& F(0, s) = 0 

from (16), with E,,,(s) = 0, and (17.i) 
(ii) r(O, s) = 5 

6) dX 
-5&o, s) - Pn & qo, s) + FQS) = 0 

from (16) and (17.ii). 
(ii) $ T(O, s) + Ki,(s) - (1 - s) Ko Lu K&(s) = 0 

The soltution of (23) and (24) can be written as 

T(X, s) = A cash X 
[ 

RX> s) = y(Acosb ~~(~)]+~s~h~J~~)]) 

(27) 

(28) 

L (30) 

with A and B constants to be determined from the boundary conditions. M~ovozov choose to 
satisfy the conditions (25) and (27.ii), which means physically that the temperature of the hot plate 
is a constant [5]. A and B then become : 

This value for B is not the same as Makovozov 
obtains, the cp(1 - s) Ko Ld . . terms are 
missing because he puts the last term in (25) 
equal to zero. If we substitute (31) and (32) into 
the boundary condition (27.i) we see that they 
are not compatible with it, equation (27.i) 
requiring B to be zero. In fact one could say that 
the combination of (27.i) and (27.ii) as boundary 
conditions at the hot plate surface are not 
satisfactory in the simpli~ed model.? 

We now construct a solution with the aid of 
the boundary conditions (2.5), (28.i) and (28.ii). 

7 The reason for this ~com~tib~ity is the fact that 
(27.i) and (27.ii) cannot be combined to give one single 
boundary condition. 

Physically this means that we accept the heat 
flux from the hot plate as a given function of 
time, rather than the temperature. The dimen- 
sionless parameters with (tk - to) now have 

- to) instead, r becomes unity. Combining 
f&i) and (28.ii) gives (eliminating %&,(s)) : 

$ T(0, s) f qxiq(s) 

i-(1 - s)KoLucp&B(o,s) = 0‘ (33) 

Substituting from (29) and (30) in (33) gives the 
value of B : 
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Here we have defined new complex d~ension- A _ 9 tp _ 
less criteria II, n as follows : 1 -I- II - (35) 1 + [KoLf? Pnq(l - &)1/V 

From (29), (30) and (25) we obtain from (34) the 
value of A : 

q Bi, + s .4mq(s) (II + 1) cash 

A= 
[ &) + 9s~ J(i) sa J(:)], t361 

s [cpBi,cosh J(t) +(n + 1) J(i).shh J(~)] 

Substituting (34) and (36) in (29) we obtain : 

cpBi,cosh 

T(X, s) = w> 1 
t .X 

s[pli,wsh J($ +(I +n) J($sinh Jc)] 

+ ABtsj{vBiq J($.sinh[J($(l -x)] +(I +Wos$&).U -X4] (37) 

4 

We invert this equation with the use of the Heaviside expansion theorem, the convolution theorem 
and the linearity properties of the Laplace transfo~ation [lo, 12], details are given in Appendix A. 
The result is : 

T(X, Fo) = 1 - $J A, cos 01.x) exp (-&v Fo) 
II=1 

m FO 

+ VA 

c 

A”& cos (P”X) 

sin Pn 
ll=l II 

Ki,(Q) exp [ -&v(Fo - ?)I d? (38) 

where Q is a dimensionless time dummy variable. 
The p,, are the positive roots of the characteristic equation 

‘B&z ABi 
4 

and the A, are given by : 
PtanP=r+n 

A, = 
2 sin fin 

J& + sinj.i*cos~,’ 

Values for A, are tabulated by Luikov [4], p. 158. 
For the moisture potential distribution one obtains : 

co 
Lu Pn 

(39) 

(40) 

B(X,Fo) = - 
V c 

A, cos &x) [ 1 - exp ( - & I;o)] 

n=l 

m 
FO 

+LuPnn 
c 

A&z, =os t&V 

sin cl* 
Ki,(%) exp [-,&(Fo - f)] d?. (41) 

n=l 
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The integral in (38) and (41) can be determined by a numerical procedure if Ki,(Fo) is known by 
experiment, see Appendix B. 1f Ki, is a constant then (38) and (41) become : 

T(X, Fo) = I - 2 A,, cos 01.X) exp (-&v Fo) 
I$=1 

+ AKi, m A, cm (cl”X) 

c l%Sh& [I 
- exp (-p,‘v Fo)] 

n=l 

cc 

0(X, Fo) = 
Lu Pn 

c 
- 

V 
A, cos (,u”X) [ 1 - exp ( - pjfv Fo)) 

m 

+LuPnAKi, 
V c 

n=1 

- exp (-p,“v Fo)]. 

If Ki,(Fo) is an exponentially decreasing heatflux with relaxation time CJ : 

Ki,(Fo) = Kigexp 

we obtain for the temperature and moisture Potential distribution : 

T(X, Fo) = 1 - f A, cos l&X) exp (- piv Fo) 

n=1 

+ VA KiqOd 
m A/A cos&X) 

c II=1 
sin”p”(Cp;v” I)[exp(-$)-exp(-&Fo)l 

and 
m 

Lu Pn 
0(X, Fo) = - 

V c 
A, cos (p,,X) [ 1 - exp (- piv Fo)] 

n=l 

+ OLU Pn A Kig” 
c 

A, CL,, ~0s @,X) 
sin p&p,Zv - 1) 

n=1 

FP (-F) - exp ( - piv Fo) 1. 

(42) 

(43) 

(45) 

(46) 

3. DISCUSSION OF THE RESULTS AND on T of the heat flux from the hot plate. The 
NUMERICAL EXAMPLES equations show that T(X, 0) = 0 and B(X, 0) = 0. 

Inspection of equation (38) and (41) reveals 
some interesting points. The first two terms of 
equation (38) describe the penetration of heat 
into the material from the free surface. The last 
term describes the temperature rise of the 
material by the heat flux from the hot plate. 

In equation (41) the first term gives the 
increase in T due to the heat penetration from 
the free surface. The last term gives the influence 

If the heat flux is constant (42, 43) the tem- 
perature and moisture potential fields become 
linear with X and independent of time in the 
limit Fo + GO. If the heat flux is described by 
(44) the temperature and moisture transfer 

potential will become uniform throughout the 
layer in the limit Fo + 03, the whole layer is 
in thermodynamic equilibrium with the sur- 
rounding air. The way in which an arbitrary 
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heat flux variation with time can be handled 
is given in the Appendix B. One further sees that 
the moisture transfer potential distribution has 
a simple relation to the temperature distri- 
bution : 

@(X, Fo) = 
Lu Pn 
v TW, F4 (47) 

which follows directly ffom (4) and (5), with 
LU a28/ax2 = 0 and the initial conditions (6). 
The ~omb~ation Lu Pn/v gives the lag of the 
moisture potential field, with respect to the 
temperature field. 

The equations can be used for the heat pene- 
tration in dry material ifone puts n = p = v = 1. 

To substantiate the obtained results a numeri- 
cal example will be given now. It is needed of 
course to take into consideration the five points 
mentioned in the introduction to select a repre- 
sentative example. If the material has a fme 
porous structure with a partly colloidal nature, 
while no important shrinkage effects occur 
during drying, these conditions can be expected 
to be fulfilled. Condition 5 will certainly be 
satisfied in drying phenomena. Moreover the 
simplification of Makovozov must be accept- 
able. This can be done in either of two ways 
(i) the Posnov number is much higher than the 
Luikov number, or (ii) the beginning of the 
drying process is only considered where no 
large moisture content gradients have been 
built up. When Lu < 1-O the temperature 
gradients are already developed and thus form 
the main driving force for the mass flux. Finally 
the criterion cp must remain positive, which 
means that (1 - E) Ko Lu Pn < 1. In [7] experi- 
mental values for u, and 6 are available for 
some materials (Luikov [7], p. 268, Table VII). 
Some values are given in Table 1. 

One can see that for the drying of wood, 
peat and the sawdust cakes (cakes formed by 
compressing sawdust with an agar-agar solu- 
tion), and koalin with a low moisture content 
the Luikov number can be small in comparison 
with the Posnov number. 

A value for 6 of O~Ol”C- i can be considered 
representative. When a temperature difference 

Table 1 

Material 

1. Wood (fir), with 25% 
moisture PI 

2. Peat (200% moisture) [7] 
3. Kaolin (10% moisture) [7] 
4. Kaolin (47 % moisture) [7] 
5. Sawdust cakes 

[own measurements] 

Lu 

0.019 

:4$ 
. 

0.73 
@07 

6 1oy=c-1) 

2.0 

2.4 
0.11 
o-19 
2.50 

of 60 degC (say) exists between the surrounding 
air and the initial temperature of the material 
and the moisture content in eq~librium with 
the surrounding air (Au* = c,(B, - 0,)) is 
1.0 kg/kg a value of 0.6 for Pn will result. A 
& value of 2.5 can be easily obtain in experi- 
mental situations with forced convection (e.g. 
clq = 5X.15 W/mZoC, I, = 0.698 W/m’C, D = 
O-03 m). If further c4 = 12.37 J/kg”C and r is 
taken to be 25104 J/kg and,+, = 13956 W/m2 
then&Z, = 0.9andKo = 5.0. If(1 - s) Lu < 0.33 
the condition rp > 0 is fulfilled. The equations 
(42, 43, 45) and (46) where programmed on an 
IBM 1620 digital computer with the following 
set of variables : 

Lu = 0*4,0*02 ; E = 0*2,0*6,0*8, 1-O; 
Pn = O-6; I& = 0.9; 
Ko = 5.0; Bi, = 25. 

The distributions where calculated at dimension- 
less times Fo = O-05, @lo, 040, O-80, f-60, 3.20, 
6.40. In representing the results use has been 
made of the equation (47). Some typical results 
are given in the Figs. 2-4. In Fig. 2 (a, b, c) the 
temperature and moisture potential distribu- 
tions are given for the constant heat flux sit~tion 
with two values of E (O-2 and 1.0). The distribu- 
tions are both nonsymmetric. There is a 
maximum in the moisture content up to 
Fo = 0.20, this maximum shifts towards the 
free surface during the drying process. The 
moisture content at the hot plate does not drop 
instantaneously to its final value as is the case 
when the temperature ofthe hot plate is constant. 
Values for 8 (in Fig. 2) which are higher than 
1-O can occur because the reference moisture 
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Distance X = s 

Fro. 2(a-c). Temperature and moisture transfer potential 
distributions during contact drying. (a) For s = 0.2. 

content (0,) is the moisture content in equifi- 
brium with the surrounding air whemas the 
temperature of the material can become higher 
than ts so that 6 may be smaller than O*. 

In Fig. 3 temperature and moisture potential 
distributions are given for a heat flux which 
decreases exponentially with time. Two “relaxa- 
tion times” C = 1.0 and D = 05 were used. 

In Fig. 4 the influence ofi: is given. A low vafue 
of E gives higher temperatures in the material, 
because less heat is needed for evaporation of 
moisture. 

Possibilities of comparison of the analytical 
results with experimentat data in literature are 
very restricted because of the scarcity of such 
data. 

I I I I I 
0 02 0,4 56 08 

Distance A’ = $ 

FIG. 2(b). For E = 1.0, Lu = Q-4 in both cases. 

In our own experiments with a decreasing 
beat flux qua~t~tively the same picture was 
found as the figures reflect. The moisture content 
showed a maximum (this corresponds with a 
minimum in the moisture transfer potential) 
which shifted towards the free surface in the 
course of time. The experimental curves how- 
ever show an inflection point in the moisture 
potential distribution after some time (FQ - 0.3). 
This is caused by the moisture content depen- 
dency of the coefficients in the constitutive 
equations.? Solution by finite differencemethods 
of the differential equations would be necessary 

t Luikov [15], showed that introduction of a hyperbolic 
type of diffusion equation can aiso account for the inflection 
point in the curves. 
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Distance X = 5 

Zi- 

\ 

!.O 

4 

v 

I.5 - 

\ 

t 

I.O\ 
b 
\ 

\ 

P5- 

Ok 

FIG. 2(c). For E = 0.8 and Lu = O-02; constant heat flux 
(Ki, = 0.9). 

to predict the phenomenon of inflection points. 
Englberger [14] studied moisture content and 

tem~rature dist~butions during combined con- 
vection and contact drying of kaolin. His 
results differ from our equations. The moisture 
content distributions began to show maxima 
shifting to the free surface, only after several 
hours of drying. In this case apparently the 
first term in equation (5) has a considerable 
influence during the first hours of drying, when 
the wide capillaries are still filled with liquid. 
From inspection of the concentration depend- 
ency of Lu and Pn in Table 1 this behaviour 
can be anticipated. Lu decreases sharply with 

--_- Q =0.5 

\ 

- o=l.O 

t =oeo 
Lu =040 

Fo=O.Od 
I 1 I I 

0.2 c-4 06 08 
Distance X= $ 

FIG. 3(a-b). Temperature and moisture transfer potential 
distributions during contact drying. (a) For E = 0.20 and 

Lu = 0.4. 

decreasing moisture content, while 6 remains of 
the same order of ma~tude. 

Finally the follow~g remarks must be made. 
Although admittedly equations (38) and (41) 
give a highly simplified picture of the complex 
transport phenomena in contact drying, the 
equations can give sufficiently accurate results 
for engineering application. Especially if the cal- 
culation is done in stages with the right co- 
efficients for each stage. Further studies on the 
numerical solution of the total set of equations 
(4) and (5) with variable coefficients is needed, to 
provide a more refined description of the drying 
process. 
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FIG. 3(b). For E = 08 and Lu = 0.02; heat flux decreases 
exponentially with time (Ki,(Fo) = Kit exp - Fe/u). 
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APPIWlXX A 

The equation (37) can be written as : 

T(x, s) = 

(A4 

The inversion of the first term in the right-hand 
side gives, by use of the Heaviside expansion 
theorem, Churchill [12-J, p_ 169 etc. 

m 

-t (A.2) 

The s, are the poles of h(s) except the zero ; 
they lie all on the negative real axis and are 
given by the characteristic equation: 

+q%i,cosh 

Changing to circular sines and cosines one 
obtains 

qBiq _ A%i /.itanp=-- 
1 +l-I 4’ (A.3) 

Where pa are the roots : 

It is easy to show that 

and 

m 

c f$$ exp (~$0) 
n 

(A-4) 

II=1 

m 

c 2 Sink” =- 
P” f sin Pll c*s i&l 

n=1 

cos l&X) exp. ( - pj$Fo). (A.3 

The inversion of the second member of equation 
(A.l), right-hand side is found by the convolution 
theorem [ 121 p. 38 : 
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The right-hand side can be evaluated with the 
inversion method, we obtain finally : 

c:s (p,X) ex;; y ,u;v(Fo - ?)I d?. (A. 7) 

Equations (A.4, AS, A.7) give the desired ex- 
pression for T(X, Fo) as given in equation (38). 
Provided the summation and integration in 
(A.7) can be interchanged. This will be allowed if 
the infinite series is uniform convergent and if 
the integral 

FO 

d Ki,(t) exp [ - &v(Fo - i)]dz” (A.8) 

exists for 0 < ? < Fo. The first condition will be 
fullfilled as can be seen by the ratio test; the 
quotient between two terms is smaller than one 
and becomes independent of z” in the limit for 
n -_) co. The only restriction is the existence of 
the integral (A.8). 

APPENDIX B 

The integrals in equation (38) and (41) can 
be calculated by the following numerical pro- 
cedure. Let Ki,(Fo) be known by experiment as a 
function of Fo (e.g. Fig. 5). By using Simpsons 
rule for numerical integration we obtain for the 
integral in (38) taking 2m intervals: 

FO 

s 

Ki,(z”) exp [ -& (Fo - z”)] d? 

= g + Ki,(Fo) 

Zm-1 

+4 
c 

Kiq(fj) exp [ -&(Fo - z”j)] 

j=1,3, 

2m-2 

+2 
c 

Ki,(fj) exp [ -,&(Fo - 131 

j=2,4. 

= C(Fo, ,u,). (B.1) 

This integral will have to be calculated for each 
pn giving a number of C(Fo, p,,). These can be 

FIG. 5. Schematic procedure for calculation of C(Fo, &,). 



TEMPERATURE AND MOISTURE DISTRIBUTIONS 59 

used in the second station of equation (38) compu~tions, it allows the solution of problems 
and (41). where the heat flux to the drying material is a 

Although the method is tedious for desk more or less arbitrary function of time. 

R&aun&-En employant des 6quations obtenues par Luikov [7-91 comme point de depart, on analyse le 
sechage dune couche de materiau humide en contact avec une plaque chaude. Makovozov [S-6] a analyse 
ua cas special, c’est-ii-dire celui dune temperature constante de la plaque chaude; nous nous attacherons 
specialement (1) au cas d’un flux de chaleur constant et (2) au das d’un flux de chaleur diminuant ex- 
pontentiellement avec le temps. Nous supposerons comme Makovozov que (1) l’influence du gradient de 
pression sur le mouvement de l’humiditc! est nbgligeable et (2) que le transport de l’humidite a lieu princi- 
palement sous l’effet des gradients de temperature. Nous avons essay6 d’obtenir aussi une equation plus 
g&rale sans la restriction mention&e en demier lieu, mais nous avons reconcontre des difficult&s in- 
surmontables dues a la dissymetrie des conditions aux limites qui ont ettc supposees. L’intluence des 
parametres sans dimensions sur les dist~butions de temperature et de potentiel d’humidite est illustrQ 
par des exemples n~~~ques. Les r&sultats sent cornpar& avec. les rares &ultats ex~~menta~ de la 

htttrature. 

Zusammenfassuag-Von der von Luikov [7-91 abgeleiteten Gleichung ausgebend, wurde die Trocknung 
einer Schicht feuchten Materials bei Rertlhrung mit einer grossen Platte analysiert. Makovozov [5, 6] 
analysierte einen Spezialfall ntilich den konstanter Temperatur der Heizplatte; wir beriicksichtigen 
(i) den Fall konstanten WIirmestroms un (ii) de Fall, mit der Zeit exponentiel abnehmenden Warmestroms. 

Wie Makovozov nehmen wir an (i), dass die Druckgradienteinfltisse auf die Feuchtigkeitsbewegung 
vernachlassigbar sind und (ii) dass der Feuchtigkeitstransport vorwiegend als Folge des Temperatur- 
gradienten stattfmdet. Wir bemtihten uns such eine allgemeinere Gleichung obne die zuletzt erwlhnten 
Emschr&nkungen abzuleiten ; dem aber stellten sich uniiberwindbare Schwierigkeiten entgegen wegen der 
Asymmetrie der Randbedingungen. Der Einfluss dimensionsloser Parameter auf Temperatur- und 
Feu~htigkeitsve~eil~g wird durch numerische Reispiele gezeigt. Die Ergebnisse werden mit den seltenen 

Versuchsdaten in der Literatur verglichen. 

~HOT&~~-~CKO~b3y~ ypaBHeHAif, rtnae~eesxbze &ZKOB~SM 17-91, npo3elZea arrarrrr3 
rrponecca cymuu 1~03 Bnarrororo rdarepuajra, rraxo~amerocri 33 uouTarsr3 c ropiiiseB nnaora- 
~ot.MaKoBo3oB[5,6]paccMaTprraan cnysati FIOCTORHHO~~ TeMrrepaTypbI Haroptwei% IIIaCTEI- 

He. MIl~epaCcMaTpEiBaeM C~~~~tl:OCTO~HHOrOTe~jrOBOrO~OTOU~~C~~3~,KOr~aTe~~OBOZt 

IIOTOK BO3paCTaeT 3KCIIOHeH~HNIbAO CO BpeMeHeM. KaK M MaKoBoaoB, M~I nonaraem, 9~0 

(1) BJnr#ruue rpa@ieHTa AaBneHMrx na nepemeaeaae B3IarH npeKe6peHcxMo Mano M (2) YTO 

IlepeHOC BJIarH OCy~eCTBJlJIeTCfi B OCHOBHOM 3a&T AetCTBHR TeMIIepaTypHbIX rpaAk¶eHTOB. 

M~I nonbr-ranucb TaKme nonywTb o6wee ypaBHeHne, He rrpH6eraR K nocne&HeMy orpaasf- 

"IeKzuo, ~0 BcTpeTkinwzb c seawiaikm~mm TP~AKOCTHMK Ha-aa accinfeTpwi ncnozbayenfarx 

rpaHawbIx yCJIOBEIii. BaHRHMe 6espaaniepwx IIapaMeTpoB HapacnpeJ&eJleHlle IIOTeHwaJrOB 

TeM~epaTypbI~B~af~~pOHJr~IoCTp~pOBaRO9EIC3IeHHblMEI~pEIMepaM~.~pOBe~eHOCpaBHeHIle 


