Int. J. Heat Mass Trangfer. Vol. 12, pp. 45-59. Pergamon Press 1969. Printed in Great Britain
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Abstract—Using equations derived by Luikov [7-9] as a starting point, the drying of a layer of moist
material in contact with a hot plate is analysed. Makovozov [$, 6] analysed a special case, viz. that of a
constant temperature at the hot plate; we pay special attention to (i) the case of a constant heat flux and
(ii) the case with a heat flux exponentially decreasing with time. As Makovozov we assume that (i) the
pressure gradient influences on the moisture movement are negligible and (i) that the moisture transport
takes place mainly as a result of temperature gradients and not in consequence of moisture potential
gradients. We endeavoured to derive also a more general equation without the last mentioned restriction
but encountered unsurmountable difficulties due to the asymmetry of the boundary conditions involved.

The influence of dimensionless parameters on the temperature and moisture potential distributions
is illustrated by numerical examples. The results are compared with scarce experimental data in the

References.
NOMENCLATURE Ay thermal conductivity
. . ~3o~17%.
X, coordinate perpendicular to the ] [mLT C ] ;
surface [L]; A = CinPm Moisture conductivity
» —ip—-lopng—17.
t, temperature [°C]; ) [mL™'T M~3] ;
6, moisture potential ["M]{; 0, density of the d_r;y material [mL~37;
I, time [T]; by heat flux [mT _; -
ay thermal diffusivity coefficient P mass flux [n}L T IE
[L2T~']; G, partial specific Gibbs free energy
o s . . 2’ 2p-17.
Ay diffusion coefficient of moisture in (L°T=1; _ .
the material [L2T~1]; L,, L, phenomenological coefficients for
. ot the fluxes ¢,, ¢, [mTL-1°C"!
7 specific heat of evaporation Sy g T i
[LZT—ZZI. mT 'L ];
8, thermalgradientcoefficient[°C~1]; Ly, = 4n/(0G/00),, phcnomenolog}gal
Cos specific isothermal mass capacity coefficient for the flux ¢,,[mTL""];
of the material [°M~!]; D, thickness of the layer of muoist
Cp specific heat capacity of the material material [L:l ;
[L2T-2°C1]; o, relaxation time [T].
O heat-transfer coefficient
[mT~3°C™']§; Dimensionless criteri
- mass-transfer coefficient 1mensionless criteria
[mL-2T-'°M~1]; Fo, Fourier number, = a,7/D?;
’ Lu, Luikov number, = a,/a,;
+ Present address : Department of Chemical Engineering, Bi,, Biot number for mass transfer,
Technological University, Eindhoven, The Netherlands. = 1, D/ )\.q .
: = o erlanc ‘ : ;
coﬁf:::t ;m[l;’/‘;n% 8}, Cm = (@u/06); where u is moisture Bi, Biot number for heat transfer,
§ m means a mass unit. = U D/ 0;

45



46 S. BRUIN

Ko, Kossovitch number,

_ remlfo — 0,)
cq(tk - tO) ’
Posnov number,
_ oty — to)
B — 0,)
& phase change criterion [4]
_ Owfir
= G
T, dimensionless temperature,
t—t,

Pn,

I~ ty
e, dimensionless moisture transfer po-
tential,
_ b -0
0, -6,
g, dimensionless temperature of the
surroundings,
L~
Tty
X, dimensionless coordinate, = x/D;
v, @, A, I1, dimensionless groups respectively
defined in equaticns (26) and (35);

Ki(Fo), dimensionless heat flux,
_ D¢, u(Fo)
Aq(ts - tO)’
Ki,(Fo), dimensionless mass flux,
_ Dy ulFo)
’{m(e() - H*)
Subscripts
k, at the surface of the hot plate;
0, initial ;
s, surroundings;
o in equilibrium with surrounding
air;
{0, averaged over characteristic
surface;
I in liquid state.

1. INTRODUCTION

IN THE present paper we analyse the contact
drying of a moist porous sheet on a hot plate
under such conditions that no boiling of the
water is possible. Heat flows through the sheet

from bottom to top (Fig. 1). The temperature
at the surface may be either higher or lower than
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F16. 1. Schematic picture of the contact drying process.

that of the surrounding air, so that the sheet may
loose or gain heat by free or forced convection,
It is assumed that the constitutive equations for
heat and mass flux of thermodynamically
irreversible processes hold (de Groot and
Mazur [1], Chapter XV). According to these
equations there is a liner relation between the
fluxes (averaged over a representative surface
element, sufficiently large to cover all occurring
pore sizes) and the gradients in temperature and
the temperature independent part of the partial
specific Gibbs free energy (chemical potential).
This is only true with one dimensional fluxes [2].
The gradients are defined as the differences in
the parameters at two sides of a characteristic
volume element divided by a characteristic
length (see Whitaker [3]). The characteristic
length must be long enough to cover all occurring
sequences of pore sizes. With respect to an
inertial frame of reference one obtains the
following equations for the average fluxes:

ot 0G;
<¢’q> = lqa:c" - Liq (E;>T

(1)
o, (@)
dx ox /.

These equations are valid, or at least a good

<¢m> = - Lqi
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approximation, if the following conditions are
satisfied :

1. During the process no deformation of the
solid phase occurs (e.g. shrinkage phenomena
are excluded).

2. The characteristic length of the porous
medium must be some orders of magnitude
smaller than the chararacteristic length of
the spatial derivatives of the intensive para-
meters. Whitaker [3] gives a precise defini-
tion of these two characteristic lengths.

3. If there exist appreciable fluctuations in the
intensive parameters inside a characteristic
volume element (characteristic surface times
the characteristic length) the averaging pro-
cedure is no longer admissible. Luikov
[4, pp. 24, 26] assumes thermodynamic
equilibrium between all three phases inside
a volume element. In the thermodynamics of
irreversible processes for a single phase a
postulate is required which states that thermo-
dynamic equilibrium exists at each point in
the phase. If one considers a porous medium
evidently one additional postulate has to be
introduced to obtain the equations (1),
namely that also thermodynamic equilibrium
exists between the phases present inside a
characteristic volume element. The main
reason for the necessity of this postulate
is the otherwise not uniquely defined tem-
perature. If the experimental situation is such
that this additional postulate is not warranted
the equations (1) cannot be used.

4. The gradients in temperature and the chemical
potential must be one dimensional. The
necessity of this condition appears in the
averaging of the entropy production over the
characteristic volume element.

5. The rate of work done by viscous forces to
push the fluid through the porous structure
inside a volume element is negligible.

Combination of the equations (1) with the
appropriate equations of change for each phase
and subsequent summation over the phases
present (the Gibbs free energy is assumed to be

only a function of temperature and moisture
transfer potential 8, gravity forces are neglected),
led Luikov to the following set of differential
equations {(we give the one dimensional form):

a0 ot 00
pc, 3= 3% ({q E) + gre,p ™ @
8 9 a0 ot

These equations govern the heat and mass
transport inside the layer of moist porous
material.

If 4,, 4, and ¢ are constant the following set
of equations remains after introduction of
dimensionless parameters:

oT T e

3o~ ax2 ~ K%m, @
@ 2% 02T
ﬁ;=LH5‘P—LuPn“a‘P' (5)

In practice A, 4, and ¢ will be functions of the
moisture transfer potential and the temperature.
For a zonal calculation one can consider them
to be constant, see Luikov [4], p. 33.

Makovozov [ 5, 6] analysed the process of con-
tact drying using these differential equations with
the simplifying assumption that the moisture
movement takes place mainly due to tempera-
ture gradients so that the influence of moisture
potential gradients are negligible in comparison.

In section 2.1 we endeavoured to derive a
solution of the complete set of equations (4)
and (5) when the temperature of the hot plate
is constant; Section 2.2 gives the analysis
(with Makovozov's simplification) when the
heat flux rather than the temperature is a given
function of time.

2. DERIVATION OF EQUATIONS FOR TEMPERA-
TURE AND MOISTURE DISTRIBUTION
2.1. General solutions
The equations (4) and {5) must be solved with
the following boundary conditions:
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Initial conditions:
T(X,0)=0. O(X,0)=0. {6)

Heat balance at the free surface:

8
a5 T(.Fo) = Bi[¢ ~ T(1, Fo)] = (1 ~ 9
« Ko LuBi,[1 — @ (1,Fo)] = 0. (7)

Mass balance at the free surface:

0 g
—- —a—i;@{i, Fo) + Pn—éi; T(1, Fo}

+Bi,[1 — 6(1,Fo)] = 0. 8)

Mass balance at the surface of the hot plate:

0 é .
5’5{:@(0, FO) - PnFX: T(O, F{?) -+ Klm(FO) ={.
©®)

The temperature of the hot plate is constant (i),
or the heat flux is given (ii):

) TO,Fo}=1

(i) £~(~ T(0, Fo) + Ki(Fo) (19

— (1 - &) KoLu Ki,(Fo) = 0.

This is the set of boundary conditions
Makovozov uses, if one puts Ki (Fo)= 0 in
equation (9) (this means that no mass transfer
takes place at the surface of the hot plate)
and if we choose (10.1). We assumed linear heat
and mass transfer at the free surface of the
material. It is convenient to solve this set of

The solutions of (12) and (13) are [4]:

equations by means of the Laplace transforma-
tion [4, 10-12]; we define the transformation as:

Z{$(X, Fo)} = $(X,s)

= ;j?d)(X, Fo)exp (—sFo)dFo. (11)

Applying this transformation on (4-10) gives:

dz

sT(X,s) = e

T(X,s) - eKos®(X,s) (12

sO{X,s)
2

d?; . d s
= Lu ngwﬁ-@(X, 5) — Lu Pn&'—x;“z- T(X,s) (13)

and the boundary conditions become:
d . N .
ax T(1,s) — Bi, E - T, s)]
| R
+ (1 — g} Lu Ko Bi, [E - 9(1,s)] =0 (14)

d . d
Pnéf T{1,5) — X% 6, s}

+ Bi, E - @(I,s}] =0 (15)

d - d S
-d—)?@(O, 5) — Pna-Xw T0,5) + Ki,{s) =0 (16)

T(0, s) = é (17.4)

;E T(©0,s) + Kiyfs) — (1 — &) Ko LuKi,{s) = 0.
(17i)

TX,s) = A, exp (XTI, \/s) + A, exp (— XTI, \/s) + Az exp (XTI, /s) + Ay exp(— XTI, /s) (18)

— 1-11
B, 9 =1

) [A4, exp(XT1, \/s) + A, exp(—I1, X /)] + u

Hg){A exp (XTI, \/s)
Ko 3 €Xp 2

+ Agexp (— XTI, /s)).

(19)

The constants 4,—4, can in principle be calculated from (14-17). The I, and II, in (18) and (19)

are given by:
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1 1 ) 1\? 4
2 - + — —(—1¥ |+ 4+ — — —]\.
i=Hl,,2 3 {1 + ¢ Ko Pn Tu (-1 \/ [(1 ¢KoPn Lu) Lu]}

(20)

The calculation of the constants 4; — 4, from (15, 14, 16) with Ki,(s) = 0 and (17.i) gives the

following set of linear equations:

Al +A2 +A3 +A4=%

N1(\/5)A1 +N2(\/5)A2 - N1(\/S)A3 - Nz(\/S)AA. =0
M A, exp(IT; \/s) — R A, exp (=TI \/s) + MA;exp (T1, \/s) — R4, exp (=11, /s)

[Hl(\/s) + Q1] A exp(I1, \/S) - [, (\/S) ~ Q] A exp(-TI, \/S)
+ (11, (\/S) +Q,] 4;exp (11, \/S) - [Hz(\/s) - Q,] Agexp(—TI, \/S)

where: , ,
N, = — PnT1I, +M)
¢ Ko

Bi,(1 — I1})

M; =N, - ¢ Ko r(22)
. =N, +m- i/

R =N eKo

(1—¢

Qi = Bi, — —— LuBi,(1 - TI}). J

The system of equations (21, 22) can in
principle be solved by the well known Cramers
rule [13], but it will be very difficult to perform
the inversion of the Laplace transformed poten-
tials. It is clear that these complications arise
from the asymmetrical boundary conditions to
the problem.

2.2. Simplified models
Makovozov proposed to simplify the system
of equations by putting

62

Physically this means that the moisture move-
ment under influence of moisture potential
gradients is negligible. In the first periods of the

_ _ Bin r(21)

N

= {[Big — (1 — O Ko LuBi,]

drying process this condition will be certainly
fulfilled. One could say that if the Posnow number
has a relatively high value this approximation
seems reasonable. Further discussion is post-
poned to Section 3.

Accepting this simplification the equations
(12-17) become [equation (14) and (15) are
combined to give equation (25)]:

= d? -
sT(X, s) = vd—ﬁ T(X,s) (23)
— d? _
sO(X,s) = — Lu Pnd_X—i T(X,s) (24)
d - ¢
a T(I,S) - (pqu [T(],S) - E]
— ol — 4 516 =
o(1 — ¢) Ko LudX O(,5=0 (25)
where v=1 +¢Ko LuPn
and ¢ =[1~(1 - ¢KoLuPn]! (26)
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. d - d -
i) 3-5(-@(0, s} — Pna—}-(; T0,5) =0

from (16), with Ki,(s) =

(i) TO,s) =-

d

() Ef—@_(o’ s) — Pn Eg—(— T(,s) + Ki,(s) =

(i)

The solution of (23) and (24) can be written as

T(X,s) = Acosh [X \/ (%) ]"* Bsinh [X\/ Gﬂ
P AN )

a%{— T(0,5) +Kiys) — (1 — &) Ko LuKi,(s) =

0, and (17.i) @7
from (16) and (17.i). (28)
(29)

(30)

with 4 and B constants to be determined from the boundary conditions. Makovozov choose to
satisfy the conditions (25) and (27.ii), which means physically that the temperature of the hot plate

is a constant [5]. 4 and B then become:

I ) R L)

i } ~ (1 ~ § Ko Lu? Pnsinh [ \/(g)}

<

G

R

This value for B is not the same as Makovozov
obtains, the (1 — &) Ko Lu* . terms are
missing because he puts the last term in (25)
equal to zero. If we substitute (31) and (32) into
the boundary condition (27.i) we see that they
are not compatible with it, equation (27.)
requiring B to be zero. In fact one could say that
the combination of (27.i) and (27.ii) as boundary
conditions at the hot plate surface are not
satisfactory in the simplified model.t

We now construct a solution with the aid of
the boundary conditions (25), (28.i) and (28.11).

1 The reason for this incompatibility is the fact that
{27.i) and (27.ii) cannot be combined to give one single
boundary condition.

()] ot — 9 Ko L Prcosh | \/(s)] )

Physically this means that we accept the heat
flux from the hot plate as a given function of
time, rather than the temperature. The dimen-
sionless parameters with (t, — t;) now have
(t; — to) instead, ¢ becomes unity. Combining
(28.) and (28.ii) gives (eliminating Ki,,(s)):

% T, s) + ¢Ki,s)

+(1 — g Ko Lu(pa%?'@'(o, s =0 (33)

Substituting from (29) and (30) in (33) gives the

value of B:
B= - A( \/ -:-)“K'iq(s), 34)
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Here we have defined new-complex dimension- 4 __ ¢ _ ® _(35)

less criteria I, A as follows: 1+11 1 +[KoLu?Pno(l — gl
From (29), (30) and (25) we obtain from (34) the
value of A:

0 Bi, +s AKifs) [(H + Dcosh \/ (—i—) to b \/ G) s \/ @] (36)
s [qa Bi, cosh \/@ +(I1 +1) \/ G) -sinh \/ (’E)}

Substituting (34) and (36) in (29} we obtain:

s = — ¢ Bi, cosh [ \/ G) . X] |
s [(p Bi, cosh \/ (%) +(1 +11) \/ G) sinh \/(%)]
{(p Bi, \/(;’-) _sinh [ \/(%) - X)] +(1 +IT)cosh [ \/(%)(1 - X)]} (37)
¢ Bi, cosh \/(%) +({1 + 1) \/(—E)smh \/(%)

We invert this equation with the use of the Heaviside expansion theorem, the convolution theorem
and the linearity properties of the Laplace transformation [10, 12], details are given in Appendix A.
The result is:

T(X,Fo)=1- 3 A,cos(ux)exp(—pu2vFo)
n=1

A=

+ Aﬁq(s)

) Fo

A X
+vA E J_CO—SME Ki () exp [ — u2v(Fo — )] d¢ (38)
sin g,

n=1
where 7 is a dimensionless time dummy variable.
The u, are the positive roots of the characteristic equation

ptany = 28 _ A p; (39)
and the A4, are given by: +1
2sin
A, = = .
" p, + sin g, cos u, “0)
Values for A4, are tabulated by Luikov [4], p. 158.
For the moisture potential distribution one obtains:
LuP
(X, Fo) = uv e Z A, cos (u,x) [1 — exp (—pu2v Fo)]
n=1
o Fo
+LuPnA Z A"'”—%j—fi{? S Ki®exp[—puv(Fo — B]dE.  (41)
n=1 "
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The integral in (38) and (41) can be determined by a numerical procedure if Ki(Fo) is known by
experiment, see Appendix B. If Ki, is a constant then (38) and (41) become :

o0
T(X,Fo) =1~ Y A,cos(u,X)exp(—pu2v Fo)
n=1

0

) A, cos (u,X)
+AK To 2 5~ exp (— @
iy Z S (1 ~exp(~pivFo)] (42)
LuP
8(X, Fo) = “v "zA,‘ cos (1, X) [1 — exp (—u2v Fo)]
n=1
oo}
LuPnAKi A, cos (1, X)
+ g d e —ul .
- Z [ ep(-uv Rl @)
n=1
If Ki(Fo) is an exponentially decreasing heat flux with relaxation time o :
Ki(Fo) = Kigexp (— ~I;—0-) {44)
we obtain for the temperature and moisture potential distribution:
o0
T(X,Fo)=1~ Y, A,cos(u,X)exp(—puv Fo)
n=1
. A, cos (1, X) Fo
+vA K Lokl S8 Mn ) A —u?
v zqaZ Pr P — [exp( ~ ) exp (— v Fo)] 45)
n=1
and
LuP
O(X, Fo) = uv i Z A, cos (1, X) [1 — exp (—p2v Fo)]
n=1
SN0 A, cos (4,X) Fo
+ oLy Pn A Ki° LGt it _ ] - —u?
ocLu Pn A Ki, Z sin (o — 1) exp - exp (—uzv Fo)l. (46)

n=1

3. DISCUSSION OF THE RESULTS AND
NUMERICAL EXAMPLES

Inspection of equation (38) and (41) reveals
some interesting points. The first two terms of
equation (38) describe the penetration of heat
into the material from the free surface. The last
term describes the temperature rise of the
material by the heat flux from the hot plate.

In equation (41) the first term gives the
increase in T due to the heat penetration from
the free surface. The last term gives the influence

on T of the heat flux from the hot plate. The
equationsshowthat T(X, 0) = 0and &(X,0) = 0.

If the heat flux is constant (42, 43) the tem-
perature and moisture potential fields become
linear with X and independent of time in the
limit Fo — co. If the heat flux is described by
(44) the temperature and moisture transfer
potential will become uniform throughout the
layer in the limit Fo — oo, the whole layer is
in thermodynamic equilibrium with the sur-
rounding air. The way in which an arbitrary
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heat flux variation with time can be handled
is given in the Appendix B. One further sees that
the moisture transfer potential distribution has
a simple relation to the temperature distri-
bution:

8(X, Fo) = L“VP "T(X,Fo)  (47)

which follows directly from (4) and (5), with
Lud*@/0X? = 0 and the initial conditions (6).
The combination Lu Pn/v gives the lag of the
moisture potential field, with respect to the
temperature field.

The equations can be used for the heat pene-
tration in dry material ifoneputs A = ¢ = v = 1.

To substantiate the obtained results a numeri-
cal example will be given now. It is needed of
course to take into consideration the five points
mentioned in the introduction to select a repre-
sentative example. If the material has a fine
porous structure with a partly colloidal nature,
while no important shrinkage effects occur
during drying, these conditions can be expected
to be fulfilled. Condition 5 will certainly be
satisfied in drying phenomena. Moreover the
simplification of Makovozov must be accept-
able. This can be done in either of two ways
(i) the Posnov number is much higher than the
Luikov number, or (i) the beginning of the
drying process is only considered where no
large moisture content gradients have been
built up. When Lu <10 the temperature
gradients are already developed and thus form
the main driving force for the mass flux. Finally
the criterion ¢ must remain positive, which
means that (1 — &) Ko Lu Pn < 1. In [7] experi-
mental values for a, and & are available for
some materials (Luikov [7], p. 268, Table VII).
Some values are given in Table 1.

One can see that for the drying of wood,
peat and the sawdust cakes (cakes formed by
compressing sawdust with an agar-agar solu-
tion), and koalin with a low moisture content
the Luikov number can be small in comparison
with the Posnov number.

A value for § of 0:01°C™! can be considered
representative. When a temperature difference

Table 1
Material Lu & 10%°C™Y
1. Wood (fir), with 259, 0019 20
moisture [7]
2. Peat (200% moisture) [7] 0-40 24
3. Kaolin (10, moisture) [7] 005 011
4. Kaolin (47% moisture) [7] 073 019
5. Sawdust cakes 007 2:50

[own measurements]

of 60 degC (say) exists between the surrounding
air and the initial temperature of the material
and the moisture content in equilibrium with
the surrounding air {(Au, = c, (0, —0,)) is
1-0 kg/kg a value of 06 for Pn will result. A
Bi, value of 2'5 can be easily obtained in experi-
mental situations with forced convection (e.g.
o, = 5815 W/m?°C, 4, = 0:698 W/m°C, D =
003 m). If further ¢, = 12:37 J/kg°C and r is
taken to be 25104 J/kg and-¢, = 139-56 W/m?
then Ki, = 0-9and Ko = 50.1f(1 — ¢) Lu < 0-33
the condition ¢ > 0 is fulfilled. The equations
(42, 43, 45) and (46) where programmed on an
IBM 1620 digital computer with the following
set of variables:

Lu = 04,002; e=02,0608,10;
Pn = 06; Ki, = 09;
Ko = 50; Bi, = 2.

Thedistributions where calculated at dimension-
less times Fo = 008, 0-10, 0-40, 0-80, 1-60, 3-20,
6-40. In representing the results use has been
made of the equation (47). Some typical results
are given in the Figs. 2-4. In Fig. 2 (a, b, c¢) the
temperature and moisture potential distribu-
tions are given for the constant heat flux situation
with two values of ¢ (0-2 and 1-0). The distribu-
tions are both nonsymmetric. There is a
maximum in the moisture content up to
Fo = 020, this maximum shifts towards the
free surface during the drying process. The
moisture content at the hot plate does not drop
instantaneously to its final value as is the case
when the temperature of the hot plate is constant.
Values for @ (in Fig. 2) which are higher than
1-0 can occur because the reference moisture
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Fi6. 2(a—<). Temperature and moisture transfer potential
distributions during contact drying. {a) For ¢ = 0-2.

content {(8,) is the moisture content in equili-
brium with the surrounding air whereas the
temperature of the material can become higher
than ¢, so that 6 may be smaller than 6.

In Fig. 3 temperature and moisture potential
distributions are given for a heat flux which
decreases exponentially with time. Two “relaxa-
tion times” ¢ = 1-0 and ¢ = 05 were used.

In Fig. 4 the influence of £ is given. A low value
of ¢ gives higher temperatures in the material,
because less heat is needed for evaporation of
moisture.

Possibilities of comparison of the analytical
results with experimental data in literature are
very restricted because of the scarcity of such
data.
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FiG. 2(b}). For & = 10, Lu = 04 in both cases.

In our own experiments with a decreasing
heat flux qualitatively the same picture was
found as the figures reflect. The moisture content
showed a maximum (this corresponds with a
minimum in the moisture transfer potential)
which shifted towards the free surface in the
course of time. The experimental curves how-
ever show an inflection point in the moisture
potential distribution after some time (Fo ~ 0-3).
This is caused by the moisture content depen-
dency of the coefficients in the constitutive
equations.t Solution by finite difference methods
of the differential equations would be necessary

¥ Luikov [15], showed that introduction of a hyperbolic
type of diffusion equation can aiso account for the inflection
point in the curves.
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Fi1G. 2(c). For ¢ = 0-8 and Lu = 0-02; constant heat flux
(Ki, = 09),

to predict the phenomenon of inflection points.

Englberger [ 14] studied moisture content and
temperature distributions during combined con-
vection and contact drying of kaolin. His
results differ from our equations. The moisture
content distributions began to show maxima
shifting to the free surface, only after several
hours of drying. In this case apparently the
first term in equation (5) has a considerable
influence during the first hours of drying, when
the wide capillaries are still filled with liquid.
From inspection of the concentration depend-
ency of Lu and Pn in Table 1 this behaviour
can be anticipated. Lu decreases sharply with
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FIG. 3(a-b). Temperature and moisture transfer potential
distributions during contact drying. (a) For & = (0:20 and
Lu = 04.

decreasing moisture content, while § remains of
the same order of magnitude.

Finally the following remarks must be made.
Although admittedly equations (38) and (41)
give a highly simplified picture of the complex
transport phenomena in contact drying, the
equations can give sufficiently accurate results
for engineering application. Especially if the cal-
culation is done in stages with the right co-
efficients for each stage. Further studies on the
numerical solution of the total set of equations
(4) and (5) with variable coefficients is needed, to
provide a more refined description of the drying
process.
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APPENDIX A
The equation (37) can be written as:

G
T gl O men] T}

. +“>C°sh{\/(c)-“ —ofrenn ) s {00 )

o ] el

The inversion of the first term in the right-hand
side gives, by use of the Heaviside expansion
theorem, Churchill [12], p. 169 etc.

-1 )40 gls)
ol {h(s)} e {h’(s)}
+ Z {Z,((z:))} exp. (s,Fo). (A2)
n=1

The s, are the poles of h(s) except the zero;
they lie all on the negative real axis and are
given by the characteristic equation

vem ) )
+ ¢ Bi, cosh [ \/ @} =0.

Changing to circular sines and cosines one
obtains

_ 9B, _ o
utanu—l+n—~Aqu.

Where yu, are the roots:

fo =i (%)

(A3)

Ly

)

9(s) +Kq(){"(s)} (A1)

< |

( ) m(s)
It is easy to show that
g(s)
Im—=o =1 Ad
e A9
and
g(sa)
Z ) exp (s, Fo)
n=1
_ Z 2 sin p,
- Hn + SID g, COS i
n=1
cos (11, X) exp. (— u2vFo). (A.5)

The inversion of the second member of equation
(A.1), right-hand side is found by the convolution
theorem [12] p. 38:

- n(s)
¥ {K ()m( )}
Fo

- oy [ o1 [ 1U8) -
j: Ki(®) [5,” { m(s)}] s dz.

(A.6)
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The right-hand side can be evaluated with the
inversion method, we obtain finally :

g1 {Eq(s) 1@}

m(s)

Fo e}

2
- S Ki () vA E Hn
U, + 81Dy, cos u,
0

n=1

cos (u,X) exp [ —p2v(Fo — ©)]di. (A7)

Equations (A4, A.5, A.7) give the desired ex-
pression for T(X, Fo) as given in equation (38).
Provided the summation and integration in
(A.7) can be interchanged. This will be allowed if
the infinite series is uniform convergent and if
the integral

an Ki (%) exp [—usv(Fo — 7)]dt (A.8)
0

exists for 0 < ¥ < Fo. The first condition will be
fullfilled as can be seen by the ratio test; the
quotient between two terms is smaller than one
and becomes independent of ¥ in the limit for
n — co. The only restriction is the existence of
the integral (A.8).

APPENDIX B

The integrals in equation (38) and (41) can
be calculated by the following numerical pro-
cedure. Let Ki (Fo) be known by experiment as a
function of Fo (e.g. Fig. 5). By using Simpsons
rule for numerical integration we obtain for the
integral in (38) taking 2m intervals:

Fo

5 Ki () exp [—p2v(Fo — %)] d¥

Fo

6m
2m-1

+4 Ki (%) exp [—p2v(Fo — )]

j=1,3,
2m—2

{Kiq(O) + Ki,(Fo)

+2 Z Ki (%) exp [—u2v(Fo — fj)]}
j=2.4,

= C(Fo,u,). (B.)

This integral will have to be calculated for each
u, giving a number of C(Fo, u,). These can be

————— Ki, @expl-piviFp—~T)]curve
5 -~
l:? T(T) /
=
oif ] Sl}gded area =
I 7 K@ exp [-p2v(Fo- D) d¥ = ClFo, )
o o
: N\\/ |
&
) | A&\\ ' \
xpl—p2v (Fo—F)]
S \
AN exp [—udv Fol
0 T=Fo

~

T

Fi1G. 5. Schematic procedure for calculation of C(Fo, ,).
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used in the second summation of equation (38) computations, it allows the solution of problems
and (41). where the heat flux to the drying material is a
Although the method is tedious for desk more or less arbitrary function of time.

Résumé—En employant des équations obtenues par Luikov [7-9] comme point de départ, on analyse Ie
séchage d’une couche de matériau humide en contact avec une plaque chaude. Makovozov [5-6] a analysé
un cas spécial, c’est-a-dire celui d’une température constante de la plaque chaude; nous nous attacherons
spécialement (1) au cas d’un flux de chaleur constant et (2) au das d’un flux de chaleur diminuant ex-
pontentiellement avec le temps. Nous supposerons comme Makovozov que (1) I'influence du gradient de
pression sur le mouvement de I'humidité est négligeable et (2) que le transport de ’humidité a lieu princi-
palement sous Peffet des gradients de température. Nous avons essayé d’obtenir aussi une équation plus
générale sans la restriction mentionnée en dernier lieu, mais nous avons reconcontré des difficultés in-
surmontables dues 2 la dissymétrie des conditions aux limites qui ont été supposées. L'influence des
paramétres sans dimensions sur les distributions de température et de potentiel d’humidité est illustrée
par des exemples numériques. Les résultats sont comparées avec les rares résultats expérimentaux de la
littérature.

Zusammenfassung—Von der von Luikov [7-9] abgeleiteten Gleichung ausgehend, wurde die Trocknung
einer Schicht feuchten Materials bei Berithrung mit einer grossen Platte analysiert. Makovozov [5, 6]
analysierte einen Spezialfall nimlich den konstanter Temperatur der Heizplatte; wir beriicksichtigen
(i) den Fall konstanten Wérmestroms un (ii) de Fall, mit der Zeit exponentie} abnehmenden Wirmestroms.

Wie Makovozov nehmen wir an (i), dass die Druckgradienteinfliisse auf die Feuchtigkeitsbewegung
vernachlassigbar sind und (ii) dass der Feuchtigkeitstransport vorwiegend als Folge des Temperatur-
gradienten stattfindet. Wir bemiihten uns auch eine allgemeinere Gleichung ohne die zuletzt erwihnten
Einschrinkungen abzuleiten ; dem aber stellten sich uniiberwindbare Schwierigkeiten entgegen wegen der
Asymmetrie der Randbedingungen. Der Einfluss dimensionsloser Parameter auf Temperatur- und
Feuchtigkeitsverteilung wird durch numerische Beispiele gezeigt. Die Ergebnisse werden mit den seltenen

Versuchsdaten in der Literatur verglichen.

Annoranus—lenonsays ypasmenus, BuBemenname JInxosmm [7-9], nposesen amanms
TPONECCa CYUIKM CIIOA BIAMKHOTO MATePHANA, HAXOZAMIEroCA B KOHTAKTE ¢ ropayell nnacTu-
HO¥. Maxososos [5, 6] pacemarpusas cyyall DOCTOAHHOMK TeMUepaTypH Ha rOpAYel MIaCTH-
He. Mul 3e paccMaTpPUBAaeM CIry4alf MOCTOAHHOrO TEILIOBOTO TIOTOKA M CIIy4all, KOrga TemnoBok
HOTOK BO3PACTaeT KCHOHEHUMANBHO cO BpeMeneM. Hak m MakoB030B, MEl mosaraem, 4to
(1) BnuAHMe rpajMeHTa [ABIEHMS HA NepeMellleHMe BJIArH mpexebpemumo mamo u (2) 4ro
[IEpeHOC BIIard OCYIECTBAACTCA B OCHOBHOM 33 CYET JeMCTBHA TeMIEPATYPHHX I'DAMEHTOR,
Mu monmTanuch, TakiKe MONyuMTh Ofmiee ypaBHeHMe, He NpUOerad K NOCAEIHEMY OTPaHM-
YeHUIO, HO BCTPETHVIMCH C BeJMYAMIIMMM TPYAHOCTAMM H3-33 ACCHMETPHH MCIOIB3YEMHLX
TPaHMYHHEX ycloBuit. Bimanue GespasMepHHX napaMeTpoB HA paclpefelieHne NOTeHUHAIOR
TeMIIEPATyPH ¥ BIArHM NPOUITIOCTPUPOBARO YHCISHHMMY IpHMepamu. [IpoBegeno cpasnenue
Pe3yabTaToB €O CKYLHMMHU SKCIePHMEHTAIBHHMY SRHHHMY, HMEIOUMMCH B JIHTEPATypPe.



